Tetrahedron Letters, Vol.27, No.10, pp 1179-1182, 1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain ©1986 Pergamon Press Ltd.

KINETIC SOLVENT DEUTERIUM ISOTOPE EFFECT ON THE OXYGENATION OF N.N-DIMETHYLANILINE WITH THE PIG LIVER MICROSOMAL FAD-CONTAINING MONOOXYGENASE

Ken Fujimori, Masafumi Yaquchi, Akihiro Mikami, Takaharu Matsuura, Naomichi Furukawa, and Shigeru Oae* Department of Chemistry, The University of Tsukuba Sakura-mura, Ibaraki, 305 Japan Takashi Iyanaqi Department of Biochemistry, Institute of Basic Medical Sciences The University of Tsukuba, Sakura-mura, Ibaraki, 305 Japan

Abstract: Both the maximum velocity and the Michaelis constant of the oxygenation
of N,N-dimethylaniline with the pig liver microsomal FAD-containing monooxygenase
(EC 1.14.13.8) to N,N-dimethylaniline N-oxide appear 1.7 buffer solution of pH 7.4 than those in deuterium oxide buffer solution of pD 7.4.

Liver microsomal FAD-containing monooxygenase (EC 1.14.13.8), which was first isolated and characterized by Ziegler and coworkers, $1)$ is known to add oxygen to xenobiotic amines $(\epsilon q, 1)$.¹⁾ The enzyme contains flavin adenine

 $R_3N: + O_2$ + NADPH + H⁺ $\frac{FAD$ -containing monooxygenase
 $R_3N \rightarrow 0 + H_2O + NADP$ ⁺ (1)

dinucleotide at the active site. The catalytic mechanism shown in Scheme I has been proposed by Poulsen and Ziegler²⁾ and Beaty and Ballou.³⁾ The actual oxidant of this enzymic oxygenation is believed to be 4a-hydroperoxyflavin, E(FlOOH), which oxidizes nucleophilic amines and sulfides to amine N-oxides and sulfoxides, respectively, $2,3$) The oxygen addition step involves an electrophilic attack of the terminal peroxidic oxygen of E(F100H) on nucleophilic substrates. $4,5$) Beaty and Ballou suggested that the rate determining step of oxygenation of N, N-dimethylaniline by this enzyme is not the electrophilic oxidation with E(FlOOH) but is the dehydration of 4a-hydroxyflavin intermediate, E(FlOH), to regenerate the oxidized form of the flavin at the enzyme active site, $E(Fl_{OX})$.³⁾ We also observed that the oxygen addition step is not the rate determining step of this enzymic oxygenation. $4,5$ However, no information about the mechanism of the dehydration of E(F1OH) has been known at all. *Present address: Okayama University of Science, Ridai-cho, Okayama, 700 Japan.

1179

Thus, we determined kinetic solvent deuterium isotope effect following the steady state kinetics of the oxygenation of N,N-dimethylaniline with the purified pig liver microsomal FAD-containing monooxygenase in both aqueous and deuterium oxide buffer solutions. The dehydration of carbinolamines to afford imines is well known to be accelerated by both specific and general acid catalysts.⁶⁾ Since E(F1OH) is a kind of carbinolamine, if the dehydration of E(FlOH) is the rate determining step in the enzymic oxygenation of N,N-dimethylaniline, the rate should be accelerated by a general acid Catalyst. Therefore, when any general acid is present at the enzyme active site, a moderate size of the kinetic solvent deuterium isotope effect will be observed in the dehydration of $E(F1OH)$.⁷⁾

The pig liver microsomal FAD-containing monooxygenase was purified according to the method reported by Ziegler et al. $^{1f)}$ with a little modification.^{3,4)} Rates of the enzymic oxygenation have been determined at 20°C by following the decreasing absorbance at 340 nm due to NADPH. $^{1a)}$ A deuterium oxide buffer solution was prepared by mixinq deuterium oxide solution of KD_2PO_4 and K_2DPO_4 so as to maitain pH meter leading to be 7.0.⁸⁾ The maximum velocity (V_{max}) and the Michaelis constant (K_m) have been obtained by Lineweaber- Burk plots of apparent rates measured with various concentration of the substrate. Results are summarized in Table. V_{max} , K_m and V_{max}/K_m of the reaction are expressed by eqs. 2-4, where E_t denotes the concentration of

$$
V_{\text{max}} = k_2 k_3 k_4 k_5 / (k_2 k_3 k_4 + k_2 k_3 k_5 + k_2 k_4 k_5 + k_3 k_4 k_5) \cdot E_t
$$
 (2)

Table I Kinetic Solvent Deuterium Isotope Effect on the Oxygenation of N,N-Dimethylaniline with the Pig Liver Microsomal FAD-Containing Monooxygenase at 20 $^{\circ}$ C^{a)}

				Medium V_{max} V_{max} K_m V_{max} V_{max} V_{max} V_{max} V_{max} K_m V_{max} V_{max} K_m V_{max} $V_{$
H_2O 7.09 4.03		1.7	1.7	1.0
D_2O 4.27 2.42				

a) The reaction mixture (1 ml) contained 0.1 M phosphate buffer solution of pH or pD of 7.4, 0.5 mg triton X-100, 0.2 nmol of the enzyme, 50μ mol of NADPH, and l -30 μ M of N,N-dimethylaniline. b) nmol NADPH-oxidation/nmol enzyme/min. c) μ M.

$$
K_{m} = k_{3}k_{4}k_{5}(k_{-1} + k_{2})/k_{1}(k_{2}k_{3}k_{4} + k_{2}k_{3}k_{5} + k_{2}k_{4}k_{5} + k_{3}k_{4}k_{5})
$$
 (3)

$$
V_{max}/K_{m} = k_{1}k_{2}/(k_{-1} + k_{2})
$$
 (4)

total enzyme. If the dehydration step of $E(FIOH)$ ($k₃$) would be the rate determining step (i.e. $k_3 \ll k_2$, k_4 and k_5) as the previous work indicates, the terms, $k_2k_3k_4$, $k_2k_3k_5$ and $k_3k_4k_5$, may be much less than $k_2k_4k_5$, and therefore eqs. 2 and 3 can be simplified as eqs. 5 and 6, respectively.

$$
V_{\text{max}} = k_3 \cdot E_t \qquad (5) \qquad K_{\text{m}} = k_3 (k_{-1} + k_2) / k_1 k_2 \qquad (6)
$$

Inspection of the data in Table I reveals that there is no kinetic solvent deuterium isotope effect on V_{max}/K_m , clearly indicating that both substrate binding step and the oxygen addition step to the substrate $(k_1, k_{-1}$ and $k_2)$ are not affected by the change of the medium from H_2O to D_2O (from eq. 4). This means that the conformation of the flavoprotein is not affected by the change of the medium, and hence $K_m^H 2^O/K_m^D 2^O$ should be identical to $k_3^H 2^O/K_2^D 2^O$ from the eq. 6. Meanwhile, $v_{\text{max}}^{H_2O} / v_{\text{max}}^{D_2O}$ should also be equal to $k_3^{H_2O}/k_3^{D_2O}$ from the eq. 5. In fact, $V_{max}^{H_2O}$ / $V_{max}^{D_2O}$ and $K_m^{H_2O}/K_m^{D_2O}$ values are identical (1.7) as shown in Table I.

Thus, the moderate solvent kinetic deuterium isotope effect observed in the dehydration step of the 4a-hydroxyflavin intermediate, E(FlOH), is in accordance with that of usual general acid catalyzed reactions⁷⁾ and suggest that the proton transfer from the general acid catalyst to the hydroxy group attached to the 4a-position of the flavin of E(FlOH) is involved in the transition state of the rate determining dehydration of E(FlOH).

References and Footenote

1) a) D. M. Ziegler and C. H. Mitchell, Arch. Biochem. Biophys., 150, 116-125 (1972).

- b) L. L. Poulsen, F. F. Kadlubar, and D. M. Ziegler, Arch. Biochem. Biophys., 164, 774-775 (1974).
- c) R. A. Prough and D. M. Ziegler, Arch. Biochem. Biophys., 180, 363-373 (1977).
- d) L. L. Poulsen, R. M. Hyslop and D. M. Ziegler, Arch. Biochem. Biophys., 198, 78-88 (1979).
- **e)** D. M. Ziegler, "Enzyme Basis of Detoxication" Ed. W. B. Jacoby, Vol. 1, pp. 201-227, Academic Press, New York (1980).
- f) D. M. Ziegler and L. L. Poulsen, Method in Enzymology, 52, 142-157 (1978).
- 2) L. L. Poulsen and D. M. Ziegler, J. Biol. Chem., 254, 6449-6455 (1979).
- 3) N. B. Beaty and D. P. Ballou, J. Biol. Chem., 255, 3817-3819 (1980); 3, 4611-4618 (1981); 256, 4619-4625 (1981).
- 4) S. Oae, A. Mikami, T. Matsuura, K. Oqawa-Asada, Y. Watanabe, K. Fujimori, and T. Iyanagi, Biochem. Biophys. Res. Comm., 131, 567-573 (1985).
- 5) The electrophilic oxidation mechanism has also been confirmed by the biomimetic system using 4a-hydroperoxy-5-ethyl-3_methyllumiflavin, 4a-FlEtOOH, first synthesized and characterized by Bruice et al. $^{\mathtt{a,b)}}$, i.e. in the oxidation of substituted N,N-dimethylanilines with 4a-FlEtOOH, the Hammett correlation of the rates with σ -constants gave ρ -value of -1.23,^{C)} a typical value for the oxidation of neutral heteroatoms with hydroperoxides. d)
	- a) C. Kemal and T. C. Bruice, Proc. Nat. Acad. Sci. U. S. A., 73, 995-999 (1976).
	- b) S. Ball and T. C. Bruice, J. Am. Chem. Soc., 102, 6498-6503 (1980).
	- c) S. Oae, K. Asada, and T. Yoshimura, Tetrahedron Lett., 24, 1265-1268 (1983).
	- d) S. Oae, "Yuki-IO-Kaqaku" (Organic Sulfur Chemistry)-Mechanism, Chap. 5: Oxidation, Kagaku-Dojin, Kyoto (1982).
- 6) T. C. Bruice and S. J. Benkovic, "Bioorqanic Chemistry" Vol. II, pp. 227- 255, W. A. Benjamin Inc., New York (1966).
- 7) a) K. B. J. Schowen, "Transition States in Biological Processes" Ed. E. D. Gandour and R. L. Schowen, pp. 225-279, Plenum Press, New York (1978).
	- b) S. Oae, N. Asai and K. Fujimori, J. Chem. Soc., Perkin Trans. 2, 1124-1130 (1978).
- 8) P. K. Glasoe and F. A. Long, J. Phys. Chem., 64, 188-190 (1960).

(Received in Japan 9 January 1986)